Abstract:Recently, automatic music transcription has made it possible to convert musical audio into accurate MIDI. However, the resulting MIDI lacks music notations such as tempo, which hinders its conversion into sheet music. In this paper, we investigate state-of-the-art tempo estimation techniques and evaluate their performance on solo instrumental music. These include temporal convolutional network (TCN) and recurrent neural network (RNN) models that are pretrained on massive of mixed vocals and instrumental music, as well as TCN models trained specifically with solo instrumental performances. Through evaluations on drum, guitar, and classical piano datasets, our TCN models with the new training scheme achieved the best performance. Our newly trained TCN model increases the Acc1 metric by 38.6% for guitar tempo estimation, compared to the pretrained TCN model with an Acc1 of 61.1%. Although our trained TCN model is twice as accurate as the pretrained TCN model in estimating classical piano tempo, its Acc1 is only 50.9%. To improve the performance of deep learning models, we investigate their combinations with various post-processing methods. These post-processing techniques effectively enhance the performance of deep learning models when they struggle to estimate the tempo of specific instruments.
Abstract:Lyrics recognition is an important task in music processing. Despite the great number of traditional algorithms such as the hybrid HMM-TDNN model achieving good performance, studies on applying end-to-end models and self-supervised learning (SSL) are limited. In this paper, we first establish an end-to-end baseline for lyrics recognition and then explore the performance of SSL models. We evaluate four upstream SSL models based on their training method (masked reconstruction, masked prediction, autoregressive reconstruction, contrastive model). After applying the SSL model, the best performance improved by 5.23% for the dev set and 2.4% for the test set compared with the previous state-of-art baseline system even without a language model trained by a large corpus. Moreover, we study the generalization ability of the SSL features considering that those models were not trained on music datasets.